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The Hall electric field inside a superconductor not in the vortex state is calculated using the

time-dependent Ginzburg-Landau equations.

The field exists only in the skin of the super-

conductor. Part of the electric field penetrating the material dies out in a London penetration
length and part dies out in a coherence length, For an applied magnetic field of 1 G, the field
is 10""-10"% V/m in most pure superconductors, and is proportional to the square of the ap-
plied magnetic field. The gradient of the electrochemical potential is zero, so there is no
Hall voltage. The charge density producing the electric field is a dipole layer, a penetration

length thick, at the surface of the material.

This means that the contact potential has a part

that depends quadratically on the applied magnetic field.

I. INTRODUCTION

Since the work of Onnes and Hof, ! it has been
assumed that there is no Hall effect in a supercon-
ductor.? Work done since then has also indicated
that the Hall effect vanishes. Lewis® measured the
Hall voltage in a vanadium sample and found an
upper bound for it smaller than the normal-state
value, from which he supposed that it was probably
zero.* More recently Bok and Klein® have inves-
tigated the Hall effect using two methods. Using
direct Ohmic contacts to the sample, which was
the method used by Lewis, 3 they also found zero
voltage. However, using the Kelvin technique they
found that the magnitude of the contact potential
depended quadratically on the applied magnetic
field. This implies that a Hall electric field exists
inside a superconducting material, but that the cor-
responding Hall voltage is canceled by a contact
potential,

Naively, one might say that there should not be a
Hall effect in a superconductor because of the
Meissner effect; magnetic fields are excluded from
the superconductor. In fact magnetic fields pen-
etrate typically to a depth of about 10”° cm, the
London penetration depth, so that it is not correct
to claim that the Meissner effect prohibits a Hall
effect.

There is, of course, a Meissner current in the
skin of a superconducting material in a magnetic
field.. The superfluid velocity corresponding to
this current is position dependent; it dies out ap-
proximately exponentially in a London penetration
length. Roughly speaking, the chemical potential
of the superconducting electrons consists of two
parts. The first part is the contribution that would
be found in equilibrium with no external magnetic
field. This part is a constant throughout the mate-
rial. The second is the kinetic energy due to the
motion of the electrons needed to screen out the
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magnetic field. Since the superfluid velocity is
position dependent, so is the chemical potential.
The electrochemical potential should be constant,
so an electric field must exist to cancel the chem-
ical potential gradient. The electric field was pre-
dicted by London® for a charged superfluid. Lewis?
suggested that it should also exist in a supercon-
ductor, and have the value

E=(1/e)$%mvz, (1)

where v is the velocity of the electron superfluid.
No Hall voltage was found in the experiments using
direct Ohmic contacts mentioned above, because
there is no electrochemical potential gradient.

The discussion of the preceding paragraph is not
a complete picture of the Hall effect in a super-
conductor, however. The derivation of (1) is essen-
tially within the framework of the two-fluid model.
Except at 7=0 there is a normal fluid which must
also be in equilibrium. The electric field (1) also
acts on the normal fluid, so a problem arises in
maintaining equilibrium for both the superfluid and
the normal fluid.

In this paper time-dependent Ginzburg-ILandau
theory is used to treat the problem of the Hall
field in a pure superconductor. In order to ensure
equilibrium, a nonzero, static, electric field ex-
ists in the skin of the superconductor. The electric
field consists of two parts which decrease as a
function of the distance from the surface. One
part dies out in a London penetration length and
the other in a coherence length. For a magnetic
field of 1 G the magnitude of the electric field is
107"-10"® V/m in most pure materials. The gradi-
ent of the electrochemical potential is zero. In
addition, the charge density required to produce
the Hall field leads, in effect, to a surface dipole
layer whose magnitude depends on the square of
the applied magnetic field. This is qualitatively
(and roughly quantitatively) in agreement with the
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experimental results of Bok and Klein.?
II. ‘GINZBURG-LANDAU EQUATIONS

In the theory of superconductivity, the Ginzburg-
Landau theory has had great success in treating a
variety of problems. As originally proposed,™®
the Ginzburg-Landau equations describe the equilib-
rium properties of a superconductor by relating
spatial variations of the order parameter (the gap
function) to the vector potential and the current.
Time dependence has since been introduced into the
theory in order to treat nonequilibrium situations.?=?
The resulting set of equations relate the variations
of the order parameter in time and space to the
vector potential, the current, the scalar potential,
and the charge density.

The Hall effect in a superconductor is not a time-
dependent effect, but time-dependent Ginzburg-
Landau theory must be used to treat the problem
since the discussion of the Hall effect deals with
an electric field and related charge densities.
There is no provision in ordinary, non-time-depen-
dent Ginzburg-Landau theory for the introduction
of a static electric field.

The driving term for the Hall effect is the kinetic
energy of the superelectrons due to current flow in
the superconductor, i.e., the kinetic energy of the
moving Cooper pairs. Abrahams and Tsuneto® have
considered this kinetic energy and have treated it
carefully in their derivation of the time-dependent
Ginzburg-Landau theory. The net result is a local
shift in the chemical potential in the Ginzburg-
Landau equations due to the current flow.

In the Gor’kov version of the BCS theory of
superconductivity,'® the “anomalous” Green’s func-
tion F~(yy') (p destroys an electron) and the
energy-gap function A vary as e~ #*t/% where p
is the chemical potential. This time behavior was
omitted from the Gor’kov equations of motion for
the superconducting Green’s function and the anom-
alous Green’s function as originally derived.'* The
time-dependent Ginzburg-Landau equations for the
energy-gap function are derived from these Gor’kov
equations, ®!% so they do not include the oscillatory
time behavior either. To restore this time depen-
dence, the time derivatives appearing in the Ginz-
burg-Landau equations as derived from the original
Gor’kov equations'® must be modified through

9 ] .
Y] A-(at +2w)A ,

9 ;]
— At (— =2 t
ot A (at 2zu>A .

)

As Abrahams and Tsuneto® have pointed out, the
extra kinetic-energy term should be included in the
chemical potential when the substitution defined in
(2) is made. The kinetic energy is due to the mo-
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tion of a Cooper pair, so the extra term is
Piﬂr/mpair:

P =H[-iV+ (2e/lic) AL .

Thus, the substitution (including the shift in chemi-
cal potential due to the kinetic energy of the moving
Cooper pairs) made for 8/8¢ has the following form:

9 9 . ” [ = 2 +\?
ot A-—{Bt +2i [u+8m (—zv+% A>]}A,
(3)

LR 2 w2 &)
oz 2 {at—2z[u+8m AR A)]A .

Although a differential equation for the order
parameter can be written down at zero temperature,
the real utility of the Ginzburg-Landau approach is
when the order parameter is small, i.e., when
the temperature is close to, but slightly below,
the critical temperature. For 1-7T/T, <1 the
form of the time-dependent Ginzburg-Landau equa-
tion used in this analysis has been derived essen-
tially by Abrahams and Tsuneto.®

As they have discussed, the coefficient of the
second-order time derivative is much smaller than
that for the first order, so only the first-order
time derivative is kept here:

' 2 LY U iy e 7 "2}
[a+b|A| +c{h’at +Zz[p. e¢+8m 1V+h_c A

+d<—i€+;—e K)Z]A(F, £)=0. (@)
C

The AG, t) is the gap function, and is proportional
to the order parameter,

a=1-T/T,, b=-%t(3)/(kT,?,
c=-u/8kT,,

g B EE) Bl B
kT, 6 6
The ¢(x) is the Riemann ¢ function, so that
£(3)=1.202; T, is the critical temperature; and
vp is the Fermi velocity. In equilibrium for zero
fields, this equation reduces to

a+b|a,l2=0, (5)

yielding the equilibrium gap function.

The equation relating the current and the gap
function is the usual expression involving gradients
of the order parameter

Fo—io]at (3428 R)a-afe-22 A, @
ke nic

where
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In time-dependent Ginzburg-Landau theory, there
is also an expression relating the charge density
p to the gap function:

P=Py+Ps s

where p, is the out-of-balance charge density of

the normal material, p, is the out-of-balance charge
density due to the superconducting state, and

these are given by

Ps=3[—§(h'2/2m)VZ|A|a
. 2\2
+i(A*{ﬁ§; +2i[u - e +£ (—iv+% A)]}A

2 -ai-co i (53¢ X))
—A{ﬁa—t—Zz[u-e¢+8m A Allca’),

("
pn=—2mee?/cp) @ , (8)
where
_ 8 _ 21&(3mge
ﬁ_h'_v?;‘a 16moi (TR T )?

The equation for p, has been derived by Schmid,?
but without the term corresponding to the extra
kinetic energy of the pair motion. Abrahams and
Tsuneto® derived p, with the kinetic-energy term,
but they did not include the first term, which
arises explicitly from spatial variations of the
order parameter. The Ginzburg-Landau equations
used here are exactly those derived by Abrahams
and Tsuneto except for the first term in (7). Abrahams
and Tsuneto confined themselves to first-order
derivatives in their derivation of the charge-density
equation. The second-order spatial derivative in
(7) appears in a natural way'® and would have ap-
peared in the work by Abrahams and Tsuneto if
they had elected to consider such terms. The

term is of interest so it is included here. '

III. HALL EFFECT

The geometry that will be considered is a semi-
infinite material with a plane surface, such that &
is the interior normal. The exterior magnetic
field is along the z direction.

Assume that inside the superconductor the mag-
netic field dies off exponentially, so that

H=ZHye*/* and A=-jrHye™/*. ©)

All spatial dependence in the problem should be on
x alone,

The case to be considered is one in which the ap~
plied magnetic field H, is small, so that only powers
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of Hy up to the second need be kept (Ho2 appears
naturally in the equation because of the presence
of A%, The gap function under these conditions
should be very nearly the same as the equilibrium,
zero-field value A,, so the following form is as-
sumed:

A=Ay [1+f(x)]e2Kt/n (10)

where 4, is the equilibrium solution of the Ginz-
burg-Landau equation, given by Eq. (5), Kis a
constant, and f(x) is a small [| f(x) | < 1] real func-
tion of position. This form for A, and the Ginz-
burg-Landau equation, yield an equation involving
fand K:

{a+ 82 [1+f()F+ 2ic(- K+ p—ed)}

8m
2
XA ye 2Kt/ (_ %C,Z;Jrsae-zx/x):o ,

s*=4HE /M . (1)

Only terms up to second order in H, are to be kept.
Since f must surely depend on H,, a term like s*f
may be ignored. Also, terms of higher order than
the first in f can be ignored since it is reasonable
to expect that f~HZ.

After cancelling the e=***/"  the real and imagin-
ary parts of what is remaining in Eq. (11) should
vanish separately, so that

2
XAg[1+f(x)]e2ikt/N | (d+ 2ic f——)

2042 f(x) + d[-f''(x) + s*e®*/¥]=0 , (12)
(=K+p=ep)1+f(x)]
+ (72 /8m)[~f"'(x) + sPe*/¥]=0 . (13)

Equation (12) may be solved for f(x). The solution
of the homogeneous equation contains a decreasing
and an increasing exponential function of position,
but the coefficient of the increasing exponential
must vanish since the order parameter cannot grow
indefinitely. Consequently,

fy=Gem@/ 0! /25 % , (14a)
where (2b/d)*/?A,=k/x, and k is the famous Ginz-
burg-Landau parameter.

Since ¢#*/* is the only explicit spatial dependence
in the equation, the particular solution consists of
only one term,

fp= -”e-axlh ’

where

(14b)

n= s*d _ st
T 4d/3*-2b4% T 4 -2

In order to ensure that no current enters or leaves
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the sample, the normal derivative of the gap func-
tion at a boundary must vanish in Ginzburg-Landau
theory”:

e (6— Zie K) =0,
fic boundary
so that
L2/
dx x=0_0’

since the vector potential is parallel to the surface
in this case, and, finally,

f)=nle®/* = @/k)e™*/] . (15)

It has been required that | f| <1. Using expres-
sion (15) and the fact that k= 2¢ V2 H\?/Fc, it is
possible to examine this requirement more closely:

2
|01 = () <

where H, is the thermodynamic critical field.

For type-I materials k <1/V2. For such values
of k, | f] <1 is satisfied well for all applied fields
up to the critical field. For type-II materials
k>1/V2, but this analysis applied only to the non-
vortex state, so Hy<H,, where H, is the lower
critical field. Roughly H,, = H,(Ink)/(2x), so for
type-II materials | fI <1 is also satisfied fairly
well for applied fields up to H,.

The ¢, u, and k can now be determined. If
there were no magnetic field present, ¢ would be
zero and K = u,. With a small magnetic field, u
should be close to g, where u, is the chemical
potential deep inside the material, where there are
no fields or currents, and its spatial dependence
should be similar to that of f. Similarily, ¢ should
be small and its spatial dependence should also
be similar, so the following forms are assumed:

o =$1e.zx/u+$2 e-xx/x’
W= lg+8K , (16)
Sl =00 e b, e* I,

These forms (16) imply that K = p,, since deep in
the interior Eq. (13) reduces to

—K+pg=0.

With the assumptions (16) above, Eq. (13) has a
simple form,

N Y )
[Gul—ed)l-a l<7\z 77—s2>:|e2"“
- ~ ok
+<6“2—e¢2+4m )\772 )e-xmzo' a7

Equation (15) is a solution of the problem, since
from f(x) [i.e., A(x)] it is possible to find p, the
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charge density, by using Eqs. (7) and (8). The
scalar potential can then be calculated via Poisson’s
equation along with the boundary condition that

deep inside the material, far from the surface,
where the magnetic field and the current are

zero, the electric field vanishes. From Eq. (17)

it is then possible to find 6u:

- 16nprtaZn/ (3mr?)

d)l = 4/A2 _ 671-”0 ez/sF b (18)
- 8mpEtAZkn/(3m?) (19)

27 K2/ N2 - emnge?/ep ’
where
Brmye?/€x~10%cm?, 4/2%~10'" cm? .

Since the second term in the denominator of Egs.
(18) and (19) completely dominates the first, the
first term may be ignored:

b, = - 8BHEAZ € o1/ (9mmy €2?) , (20)
by = 4PHEAS € pknl/ (9mng €22%) , (21)
-~ . 71 (1 8 BAZe 7

~n— = (= -2 EZ0CF) _g2 T
OM=NT0 52 (2 9 mye ) S Bm 22)
_— 7 o1/1 4 BAZéE
6u2=_Knm )xz(4—9 nge ) ’ (23)

For a pure material near the critical tempera-
ture Ay and X are given below.'® The electric field
corresponding to the scalar potential in (20) and
(21) can be written in terms of more recognizable
variables:

a5=[8/1¢(3)] (wkT, 2 (1 - T/T,) ,
(24)

_pH 4
"% 8 3nge(d -2
Table I contains typical values of E for a few ma-
terials.

E (4e”@ A — g2 o= *IY) | (25)

TABLE 1. Typical values for E (H, in gauss).

- b:6] T 1/2 .
Material |E l/ l:—g—#(l —f) ] (in V/m)
Pb (8.2 %1074 2%~ (4,1x1076) g0 */>
Al (4,8%1074 2%/ — (1,7x10) g"**/*
Nb (5.2 X107 &2 %/* — (1. 3 X 106" ¥/
Sn (7.8x1074) e 2%/ — (9, 7%10") gk %/
Y (4.5%107Y e 2*/* — (1,4 x10-8) gk ¥/
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The charge density which produces the Hall elec-
tric field (25) is an effective-surface dipole layer
(of thickness ~1). The corresponding potential
difference 6V across this layer depends quadratical-
ly on the applied magnetic field and is given by
_H: 1 4

" 81 mye 3(2+k)

5V (26)
Although there is no voltage across the material
because there is no electrochemical potential gradi-
ent, 6V would appear as a shift in the work function
of the material. This is in agreement with the
experiment of Bok and Klein,® who observed that

the contact potential of their superconducting
sample had a part which behaved roughly in agree-
ment with (26).

IV. CONCLUSION

This analysis shows that there is a Hall field
in superconducting materials not in the mixed
state. Unlike the normal Hall effect, there is no
Hall voltage. In a superconductor the Hall field
arises in order to ensure that there be no electro-
chemical potential gradient. The absence of a
voltage explains why attempts to measure a super-
conducting Hall voltage in the past have led to a
null result.””®5 There is a dipole layer at the sur-
face, however, which appears to have been seen.’

The magnitude of the Hall field in the supercon-
ducting state is comparable, but not identical, to
the magnitude of the Hall field in the normal state.
Of course, in the superconducting state the field
does not exist in the bulk of the material; it exists
only in the skin.

Also, there is no Hall coefficient that can be de-
fined in the usual way. The Hall electric field
derived using the time-dependent Ginzburg-Landau
equations has two parts: One is an exponentially
decreasing function of position that dies out in about
a coherence distance and the other is an exponen-
tial that dies out in a London penetration length.
This means that the spatial behavior of the Hall
field is different from the spatial behavior of
JXH, so they cannot be simply proportional to one
another.

If Eq. (1), the London result, were correct, the
potential difference across the dipole layer would
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be given by
B 1

8r nge ’ @)

6 VLondon =

where ng is the density of superconducting electrons.
The 6V in (26) is roughly the same order of magni-
tude as the London result (27), but it differs from
the London result in some respects. First, n,
(the total electronic density) appears rather than
ng, S0 as T—T, 5V does not diverge as 6 Vygngon
does. Second, « appears in (26), which is a mani-
festation of the fact that the Hall field depends on
the coherence length as well as the penetration
length.

The calculation presented here applies to pure
materials. In the case of a dirty superconductor,
a result similar to (26) should also be found, since
the Ginzburg-Landau equations for the dirty case
are similar in form to Eqs. (4), (6), and (7).
However, the values of some of the constants in the
equations take on different values, depending on the
value of the electronic mean free path. The net
result for the dirty case, however, is essentially
a redefinition of the Ginzburg-Landau parameter
k. Thus, in the end an expression like (26) for the
change in the work function should exist for dirty
materials, too.

The results of this calculation give a qualitative
picture of the Hall effect in a superconductor not
in the vortex state. The results describe the de-
pendence of the electric field and the work function
on the various parameters of the problem (e.g.,
Hy, k, and M). Quantitatively, the results should
agree with experiment to within an order of magni-
tude, since the model of a superconductor used here
is simple, and a complicated band structure has
been replaced by a free-electron approximation.
Also, the calculation is limited by the fact that
T=T, but this is a limitation of virtually all cal-
culations using Ginzburg-Landau theory. Even
though the results are strictly true only near T,
qualitatively (25) and (26) probably describe the

behavior of the superconductor even well below T,.
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A general derivation of the electrodynamic response of a quantum many-electron gas in a
nonmagnetic conducting solid immersed in an applied magnetic field is given. Self-consistent-
field (SCF) theory of the equation of motion of the one-electron density matrix is used in such
a way as to include, from the outset, one-electron effects such as complex energy band struc-
ture, spin-orbit coupling, and spin paramagnetism. This treatment specifically omits exchange
effects such as those encountered in an extended random-phase approximation or Landau-Fermi
liquid theory. The aim is to study the properties of wave propagation in the gas, looking for
spin waves and/or characteristic effects which uniquely involve the spin degree of freedom and
the paramagnetism of the equilibrium state. The derived results contain terms which have
been neglected previously and terms which do not evolve from a simple generalization of pre-
vious treatments of the quantum dielectric theory of a Fermi gas. There are interesting spin
effects in the plasma wave properties both with and without spin~-orbit mixing of the one-elec-

tron states.

In an effective mass approximation for the one-electron states, it is shown that

there are resonances and cutoffs associated with electron spin resonance in the transverse
wave propagation (both perpendicular and parallel to the magnetic field). For spin-orbit mixed
states, one finds zeros of the longitudinal dielectric constant (for long wavelength) near the
electron spin-flip frequency. The mechanism for the spin wave associated with this zero is

a correlation of the motion of electrons with “opposite spins” by the long-range Coulomb field
through the spin-orbit coupling of the crystalline eigenstates.

I. INTRODUCTION

Spin-wave excitations of conduction electrons in
solids are usually discussed in relation to the prop-
erties of itinerant ferromagnets, ! and of simple
metals? (in an applied magnetic field) in which weak
exchange® interactions are important. In both
cases éssential roles are played by exchange inter-
actions and the magnetization of the equilibrium
state, ferromagnetism in the former and conduc-
tion electron paramagnetism in the latter. In this
paper we show that interesting spin-wave effects
occur in a solid-state plasma for which simple
self-consistent-field theory is appropriate and ex-
change interactions are unimportant.

It was pointed out in a preliminary publica,tion4
that, even when explicit exchange interactions are
unimportant, electron spin waves can occur in
nonmagnetic conductors owing to spin-orbit cou-

pling and the Coulomb self-consistent field (SCF)
of the interacting electrons. In this previous
work, the collective excitations of the electron

gas were treated in the longitudinal wave approxi-
mation. It was shown that the general SCF longi-
tudinal dielectric constant had zeros (for long wave-
length) near the electron spin-flip frequency. The
mechanism for the spin wave associated with this
zero is a correlation of the motion of electrons
with “opposite spins” by the long-range Coulomb
field through the spin-orbit coupling of the crystal-
line eigenstates. This paper gives a more general
treatment of the SCF collective excitations of the
quantum plasma in a magnetic field. A general
implicit dispersion relation is derived by solving
self-consistently the linearized equation of motion
for the single-electron density matrix and the full
set of Maxwell’s equations. Exchange effects such.
as those encountered in an extended random-phase



